Part Number Hot Search : 
A7220 PNN6028 ULN2003 APT30 14D68 RL251GP CM1104 ULN2003
Product Description
Full Text Search
 

To Download MGA-22103 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  MGA-22103 2.5-2.7 ghz wimax power amplifi er module data sheet description avago technologies MGA-22103 power amplifi er module is designed for mobile and fi xed wireless data applications in the 2.5 to 2.7 ghz frequency range. the aggressive gain shape limits the noise injected into radio receivers co- located in the same device. the pa is optimized for ieee 802.16 wimax modulation but can be used for any high linearity applications. the pa exhibits fl at gain and good match while providing linear power effi ciency to meet stringent mask conditions. it utilizes avago technologies proprietary gaas enhancement-mode phemt technology for superior performance across voltage and temperature levels. the MGA-22103 is packaged in a 3 x 3 x 1 mm package for space-constrained applications. functional block diagram features ?? advanced gaas e-phemt ?? 50 ? all rf ports ? 25db gain step in low power mode with reduced idsq ?? integrated cmos compatible pins for shutdown and low power mode ?? 3 to 5 v supply ?? adjustable bias current with bctrl pin ?? small size: 3 x 3 x 1 mm ?? stable under all loads or conditions ?? -40 c to +85 c operation at 2.5 ghz (bctrl = 2.8 v) ?? gain of 34 db ?? pae of 21% at sem compliant pout = 25 dbm ?? meets 802.16 masks at 25 dbm pout , 16 qam wimax with 3.3 v and 437 ma ?? 16 qam wimax evm < -32 db (2.5%) at 25 dbm ?? low power idd, 85 ma at pout = 0 dbm applications ?? portable wimax applications with stringent coexistence requirements package diagram gnd 16 gnd 16 ismn bias network omn vcc1 15 vcc2 13 gnd 14 bsply 5 bsw 6 n/c 8 pmod 7 rfin 1 gnd 2 gnd 3 bctrl 4 gnd 12 rfout 11 gnd 10 n/c 9 nc 4 bsply 5 bsw pamod 67 nc rfout gnd gnd 1 3 16 gnd vcc2 vcc1 17 14 gnd gnd 12 10 11 gnd gnd bctrl rfin 5 15 1 1 3 1 6 7 8 1 9 10 11 12 13 14 1 2 4
2 electrical specifi cations absolute minimum and maximum ratings table 1. minimum and maximum ratings parameter specifi cations comments description pin min. max. unit supply voltage vcc1 vcc2 5.5 v bias supply bsply 3 5.5 v bias control bctrl 1.65 5.5 v bias on/off bsw 1.65 5.5 v mode control pamod 1.65 5.5 v rf input power rfin 15 dbm using 16 qam ? msl msl3 channel temperature 150 c storage temperature -65 150 c table 2. recommended operating range parameter specifi cations comments description pin min. typical max. unit supply voltage vcc1 vcc2 3 3.3 5 v bias supply bsply 3 3.3 5 v 13 ma bias control bctrl 2.75 2.8 2.85 v 0.7 ? a bias on/off bsw 1.65 1.8 3.3 v 7ua mode control pamod 1.65 1.8 3.3 v 17 ? a rf output power rfout 25 27 dbm using 16 qam ? frequency range 2.5 2.7 ghz thermal resistance, ? ch-b 23.4 c/w channel to board case temperature -40 +85 c
3 wimax (802.16e) electrical specifi cations all data measured on an fr4 demo board at vcc1 = vcc2 = 3.3 v, bctrl = 2.8 v, tc = 25 c, 50 ? at all ports. unless otherwise specifi ed, all data is taken with ofdm 16-qam ? convolutional coding modulated signal per ieee 802.16e with 10 mhz bw operating over the bw of 2.5 ghz to 2.7 ghz. table 3. rf electrical characteristics parameter performance unit comments min. typical max. input return loss -10 db gain flatness 1 db over any 10 mhz gain variation (v cc) -1 1 db 3 v to 5 v high power mode evm -34 -30 db vcc = 3.3 v -36 -32 vcc = 3.6 v sem-a @ 5.05 mhz -20 -13 dbm/100 khz ibw = 100 khz sem-b @ 6.5 mhz -20 -13 dbm/mhz ibw = 1 mhz sem-c @ 10.5 mhz -26 -19 sem-d @11.5 mhz -27 -25 sem-e @15.5 mhz -37 -29.5 sem-f @ 20.5 mhz -40 -37 pout (sem compliant) +25 dbm 802.16e total dc current 437 ma pout = 25 dbm gain 31 34 37 db low power mode evm -36 db pout = 0 dbm gain step 18 23 24 db total dc current 85 ma pout = 0 dbm p1db 31 dbm cw single tone psat 32 dbm cw single tone 2fo -36 dbm/mhz settling time 0.2 0.5 ? s icc leakage current 10 40 ? a max current specifi ed at 85 c noise power in cell band -146 dbm/hz noise power in gps band -149 dbm/hz noise power in pcs -144 dbm/hz
4 figure 1. evm frequency sweep at 25 c and pout = 25 dbm over vcc figure 2. evm frequency sweep at 25 c and pout = 26 dbm over vcc figure 3. evm frequency sweep at vcc = 3.3 v and pout = 25 dbm over tambient figure 4. evm power sweep at vcc = 3.3 v and 25 c over frequency figure 5. evm power sweep at vcc = 3.3 v and -30 c over frequency figure 6. evm power sweep at vcc = 3.3 v and +85 c over freq uency selected performance plots evm power sweep (freq = 2.5 to 2.7 ghz) tambient = 25 c and vcc = 3.3v evm frequency sweep (vcc = 3.0 to 5.0 v) tambient = 25 c and pout = 26 dbm evm power sweep (freq = 2.5 to 2.7 ghz) tambient = -30 c and vcc = 3.3 v -45.00 -40.00 -35.00 -30.00 -25.00 -20.00 2500 2600 2700 frequency [mhz] evm [db] -34.00 -32.00 -30.00 -28.00 -26.00 -24.00 -22.00 -20.00 2500 2600 2700 frequency [mhz] evm [db] -40.00 -38.00 -36.00 -34.00 -32.00 -30.00 -28.00 -26.00 -24.00 -22.00 -20.00 2500 2600 2700 frequency [mhz] evm [db] -48 -46 -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 20 21 22 23 24 25 26 pout [dbm] evm [db] -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 20 21 22 23 24 25 26 pout [dbm] evm [db] -44 -42 -40 -38 -36 -34 -32 -30 -28 -26 -24 -22 -20 20 21 22 23 24 25 26 pout [dbm] 3v0 3v3 3v6 4v2 5v0 evm frequency sweep (vcc = 3.0 to 5.0 v) tambient = 25 c and pout = 25 dbm evm [db] 3v3 3v6 4v2 5v0 evm power sweep (freq = 2.5 to 2.7 ghz) tambient = +85 c and vcc = 3.3 v evm frequency sweep (tambient = -30 c to +85 c) vcc = 3.3 v and pout = 25 dbm -30 c 25 c +85 c 2.5 ghz 2.6 ghz 2.7 ghz 2.5 ghz 2.6 ghz 2.7 ghz 2.5 ghz 2.6 ghz 2.7 ghz
5 figure 7. gain frequency sweep at 25 c and pout = 25 dbm over vcc figure 8. gain frequency sweep at vcc = 3.3 v and pout = 25 d bm over tambient figure 9. gain power sweep at vcc = 3.3 v and 25 c over pout figure 10. gain power sweep at vcc = 3.3 v and -30 c over pout figure 11. gain power sweep at vcc = 3.3 v and +85 c over pout gain frequency sweep (vcc = 3.0 to 5.0 v) tambient = 25 c and pout = 25 dbm gain power sweep (freq = 2.5 to 2.7 ghz) tambient = 25 c and vcc = 3.3v gain power sweep (freq = 2.5 to 2.7 ghz) tambient = +85 c and vcc = 3.3 v gain frequency sweep (tambient = -30 c to +85 c) vcc = 3.3 v and pout = 25 dbm gain power sweep (freq = 2.5 to 2.7 ghz) tambient = -30 c and vcc = 3.3 v 3v0 3v3 3v6 4v2 5v0 32.00 33.00 34.00 35.00 36.00 37.00 38.00 39.00 40.00 2500 2600 2700 frequency [mhz] gain [db] 29 31 33 35 37 39 2500 2600 2700 frequency [mhz] gain [db] 32 33 34 35 36 37 38 39 40 20 21 22 23 24 25 26 pout [dbm] gain [db] 32 33 34 35 36 37 38 39 40 20 21 22 23 24 25 26 pout [dbm] gain [db] 28 29 30 31 32 33 34 35 36 37 38 20 21 22 23 24 25 26 pout [dbm] gain [db] -30 c 25 c +85 c 2.5 ghz 2.6 ghz 2.7 ghz 2.5 ghz 2.6 ghz 2.7 ghz 2.5 ghz 2.6 ghz 2.7 ghz
6 figure 12. total current frequency sweep at 25 c and pout = 25 dbm over vcc figure 13. total current frequency sweep at 3.3 v a nd pout = 25 dbm over tambient figure 14. total current power sweep at 3.3 v and 25 c over frequency figure 15. total current power sweep at 3.3 v and -30 c over frequency figure 16. total current power sweep at 3.3 v and +85 c over frequency total current frequency sweep (vcc = 3.0 to 5.0 v) tambient = 25 c and pout = 25 dbm total current power sweep (freq = 2.5 to 2.7 ghz) tambient = 25 c and vcc = 3.3 v total current power sweep (freq = 2.5 to 2.7 ghz) tambient = +85 c and vcc = 3.3 v total current frequency sweep (tambient = -30 c to +85 c) vcc = 3.3 v and pout = 25 dbm total current power sweep (freq = 2.5 to 2.7 ghz) tambient = -30 c and vcc = 3.3 v 0.400 0.420 0.440 0.460 0.480 0.500 0.520 0.540 0.560 0.580 0.600 2500 2600 2700 frequency [mhz] itotal [a] 0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60 2500 2600 2700 frequency [mhz] itotal [a] 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 20 21 22 23 24 25 26 pout [dbm] itotal [a] 0.30 0.34 0.38 0.42 0.46 0.50 0.54 0.58 0.62 20 21 22 23 24 25 26 pout [dbm] itotal [a] 0.3 0.34 0.38 0.42 0.46 0.5 0.54 0.58 0.62 20 21 22 23 24 25 26 pout [dbm] itotal [a] 3v0 3v3 3v6 4v2 5v0 -30 c 25 c +85 c 2.5 ghz 2.6 ghz 2.7 ghz 2.5 ghz 2.6 ghz 2.7 ghz 2.5 ghz 2.6 ghz 2.7 ghz
7 figure 17. sem frequency sweep at vcc = 3.3 v and 25 c (2 db post-pa loss assumed) figure 18. sem frequency sweep at vcc = 3.6 v and 25 c (2db post-pa loss assumed) figure 19. sem frequency sweep at vcc = 4.2 v and 25 c (2 db post-pa loss assumed) figure 20. sem at vcc = 3.3 v, 25 c and 2.5 ghz over vcc (2db post-pa loss assumed) figure 21. sem at vcc = 3.3 v, 25 c and 2.6 ghz over vcc (2 db post-pa loss assumed) figure 22. sem at vcc = 3.3 v, 25 c and 2.7 ghz over vcc (2db post-pa loss assumed) wimax spectrum emission mask, 802.16e (16qam ?) pout = 25 dbm, vcc = 3.3 v and tambient = 25 c wimax spectrum emission mask, 802.16e (16qam ?) pout = 25 dbm, vcc = 4.2 v and tambient = 25 c wimax spectrum emission mask, 802.16e (16qam ?) pout = 25 dbm, vcc = 3.6 v and tambient = 25 c wimax spectrum emission mask, 802.16e (16qam ?) pout = 25 dbm, freq = 2.5 ghz and tambient = 25 c wimax spectrum emission mask, 802.16e (16qam ?) pout = 25 dbm, freq = 2.6 ghz and tambient = 25 c wimax spectrum emission mask, 802.16e (16qam ?) pout = 25 dbm, freq = 2.7 ghz and tambient = 25 c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] spec 2.5 ghz 2.6 ghz 2.7 ghz spec 2.5 ghz 2.6 ghz 2.7 ghz spec 2.5 ghz 2.6 ghz 2.7 ghz spec 3v0 3v3 3v6 4v2 5v0 spec 3v0 3v3 3v6 4v2 5v0 spec 3v0 3v3 3v6 4v2 5v0
8 figure 23. sem at vcc = 3.3 v, -30 c and 2.5 ghz over vcc (2 db post-pa loss assumed) figure 24. sem at vcc = 3.3 v, -30 c and 2.6 ghz over vcc (2 db post-pa loss assumed) figure 25. sem at vcc = 3.3 v, -30 c and 2.7 ghz over vcc (2 db post-pa loss assumed) figure 26. sem at vcc = 3.3 v, 25 c and 2.5 ghz over vcc (2 db post-pa loss assumed) figure 27. sem at vcc = 3.3 v, 25 c and 2.6 ghz over vcc (2 db post-pa loss assumed) figure 28. sem at vcc = 3.3 v, 25 c and 2.7 ghz over vcc (2 db post-pa loss assumed) wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.7 ghz and tambient = 25 c wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.5 ghz and tambient = 25 c wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.6 ghz and tambient = 25 c wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.7 ghz and tambient = -30 c wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.5 ghz and tambient = -30 c wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.6 ghz and tambient = -30 c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm
9 figure 29. sem at vcc = 3.3 v, +85 c and 2.5 ghz over vcc (2 db post-pa loss assumed) figure 30. sem at vcc = 3.3 v, +85 c and 2.6 ghz over vcc (2 db post-pa loss assumed) figure 31. sem at vcc = 3.3 v, +85 c and 2.7 ghz over vcc (2 db post-pa loss assumed) wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.5 ghz and tambient = 85 c wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.7 ghz and tambient = 85 c wimax spectrum emission mask, 802.16e (16qam ?) vcc = 3.3 v, freq = 2.6 ghz and tambient = 85 c -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] -60 -50 -40 -30 -20 -10 0 10 20 30 -25.00 -15.00 -5.00 5.00 15.00 25.00 freq_o?set [mhz] pout [dbm/mhz] spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm spec 25 dbm 24 dbm 23 dbm 22 dbm 21 dbm
10 evaluation board description table 4. pin description: top pin no. function bottom pin no. function 1 vcc2 2 vcc2 3 b_sply 4 gnd 5 vcc1 6 gnd 7 nc 8 gnd 9 pamod 10 gnd 11 nc 12 gnd 13 nc 14 b_sw 15 b_ctrl 16 gnd 17 nc 18 gnd 19 nc 20 gnd recommended turn on sequence ?? apply vcc1 and vcc2 ?? apply bsply ?? apply bctrl ?? apply bsw ?? for hpm apply pamod hi ?? for lpm apply pamod lo ?? apply rf input not to exceed 15 dbm turn off in reverse order table 5. typical test conditions: pin hpm lpm vcc1, 2 3.3 v 3.3 v supply voltage pamod 1.8 v 0 v low power mode b_sply 3.3 v 3.3 v bias voltage b_ctrl 2.8 v 2.8 v bias control b_sw 1.8 v 1.8 v pa enable notes: vcc1, vcc2 and b_sply can be tied together to reduce supply voltages, but b_ctrl needs to be a regulated voltage which is optimized for 2.8 v at vcc of 3.3 v. other bias points are described under fl exible bctrl optimization section. demoboard top pins demoboard bottom pins 8 10 12 14 16 18 20 2 4 6 13 11 9 7 5 3 1 19 17 15
11 application circuit MGA-22103 1 rf in 2 gnd 3 gnd 4 bctrl gnd 12 rf out 11 gnd 10 nc 9 bctrl rf in rf out 100 pf gnd 16 vcc1 15 gnd 14 vcc2 13 5 bsply 6 bsw 7 pamod 8 nc 100 pf bsply bsw pamod vdd1 100 pf vdd2 100 pf 100 pf 0.1 m f 100 pf 0.1 m f 10 m f 47 m f 10 m f using 3.3 v or 5 v supply and connecting vcc1, vcc2, bslpy and bctrl notes: bctrl regulates the device current, thus r1 and r2 should have good tolerance rating. if available, a voltage regulator is the preferred method of bias. in this example we set r2 at 10 mohm and solve for r1 with simple voltage divider equation. use high resistance values to limit leakage current. vbat vcc1 vcc2 bsply r 1 r 2 bctrl v bctrl = *v batt r 2 r 1 + r 2 3.3 v example: 2.85 v = *3.3 v 10 m ? r 1 + 10 m ? r 1 = 1. 58 m ? r 2 = 10 m ? v bctrl = 2.85 v v bat = 3.3 v r 2 = 10 m r 1 = ? given: v bctrl = *v batt r 2 r 1 + r 2 5.0 v example: 2.85 v = *5.0 v 10 m ? r 1 + 10 m ? r 1 = 7.54 m ? r 2 = 10 m ? v bctrl = 2.85 v v bat = 5.0 v r 2 = 10 m r 1 = ? given:
12 land pattern figure 32. recommended footprint figure 33. recommended soldermask opening figure 34. package dimensions notes: 1. all units are in millimeters 2. package is symmetrical 3.00 0. 1 0 1 .50 0. 1 0 t op v iew th ro ugh pac k a g e 3.00 0. 1 0 1 .50 0. 1 0 0.55 0. 1 0 0.30 0. 1 0 0.20 0. 1 0 0. 1 0 0. 1 0 nc bc t r l 9 4 bsp ly 5 bs w pamod 67 nc 8 r f ou t 1 5 r fi n gnd gnd 1 3 2 1 6 gnd v cc2 v cc 1 1 7 1 4 gnd 1 3 gnd 1 2 1 0 11 gnd gnd 3.00 0. 1 0 3.00 0. 1 0 0.30 0. 1 0 1 .50 0. 1 0 0. 1 5 0. 1 0 1 .50 0. 1 0 t op v iew th ro ugh pac k a g e 0.30 0. 1 0 0.20 0. 1 0 nc 9 4 5678 r f ou t 1 5 gnd gnd 1 3 2 1 6 gnd v cc2 v cc 1 1 7 1 4 gnd 1 3 gnd 1 2 1 0 11 gnd gnd bc t r l r fi n bsp ly bs w pamod nc 3.00 0. 1 0 t op v iew th ro ugh pac k a g e 3.00 0. 1 0 0.65 0. 1 0 0.40 0. 1 0 1 .60 0. 1 0 0.55 0. 1 0 0. 1 0 0. 1 0 nc bc t r l 9 4 5678 r f ou t 1 5 r fi n gnd gnd 1 3 2 1 6 gnd v cc2 v cc 1 1 7 1 4 gnd 1 3 gnd 1 2 1 0 11 gnd gnd bsp ly bs w pamod nc
13 handling and storage typical smt refl ow profi le for maximum temperature = 260+0/-5 c profi le feature sn-pb solder pb-free solder average ramp-up rate (tl to tp) 3c/sec max 3c/sec max preheat C temperature min (tsmin) C temperature max (tsmax) C time (mon to max) (ts) 100 c 150 c 60-120 sec 100 c 150 c 60-180 sec tsmax to tl C ramp-up rate 3c/sec max time maintained above: C temperature (tl) C time (tl) 183 c 60-150 sec 217 c 60-150 sec peak temperature (tp) 240 +0/-5 c 260 +0/-5 c time within 5 c of actual peak temperature (tp) 10-30 sec 10-30 sec ramp-down rate 6c/sec max 6c/sec max time 25 c to peak temperature 6 min max 8 min max time temperature tp t 25 c to peak ts preheat t l t p ts max ts min t l critical zone t l to t p ramp up ramp down 25 MGA-22103 part number ordering information part number devices per container container MGA-22103-blkg 100 7 reel MGA-22103-tr1g 3000 13 reel
for product information and a complete list of distributors, please go to our web site: www.avagotech.com avago, avago technologies, and the a logo are trademarks of avago technologies in the united states and other countries. data subject to change. copyright ? 2005-2011 avago technologies. all rights reserved. av02-2812en - june 28, 2011 tape and reel information


▲Up To Search▲   

 
Price & Availability of MGA-22103

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X